
Project 4:

BruinNav

Time due: 11 PM, Thursday, March 16

 2

Introduction 3

Anatomy of a navigation engine 4

Street Map Data File 7

What Do You Need to Do? 10

What Will We Provide? 10
Our Test Driver 11

Details: The Classes You Must Write 12
MyMap 12

Requirements for MyMap 13
MapLoader 14

Requirements for MapLoader 15
AttractionMapper 16

Requirements for AttractionMapper 17
SegmentMapper 17

Requirements for SegmentMapper 19
Navigator 19

Requirements for Navigator 26
How to Implement a Route-finding Algorithm 26

Requirements and Other Thoughts 30

What to Turn In 31

Grading 32
Optimality Grading (5%) 32

 3

Introduction

The NachenSmall Maps & Navigation Corporation, owner of the popular turn-by-turn navigation
website WeHaveTheBestNavigationSoftwareInTheWorldIfYouCanJustRememberTheURL.com,
has decided to stop licensing a 3rd-party turn-by-turn navigation system (from a company who’s
name rhymes with "frugal") and instead build their own navigation engine in-house. Given that
the NachenSmall leadership team is comprised entirely of UCLA alums, they’ve decided to offer
the job to build a prototype of the new navigation system the students of CS32. Lucky you!

So, in your last project for CS32, your goal is to build a simple navigation system that loads and
indexes a bunch of Open Street Map geospatial data (which contains latitude and longitude data
for thousands of streets and attractions) and then build a turn-by-turn navigation system on top
of this data. Your completed Project 3 solution should be able to deliver optimal directions like
the following, which detail how to get from 1031 Broxton Ave. (in Westwood) to The Maltz Park
in (Beverly Hills):

You are starting at: 1031 Broxton Avenue
Proceed 0.09 miles southeast on Broxton Avenue
Take a left turn on Kinross Avenue
Proceed 0.07 miles east on Kinross Avenue
Take a right turn on Glendon Avenue
Proceed 0.08 miles southeast on Glendon Avenue
Take a left turn on Lindbrook Drive
Proceed 0.93 miles east on Lindbrook Drive
Take a right turn on Holmby Avenue
Proceed 0.08 miles southeast on Holmby Avenue
Take a left turn on Wilshire Boulevard
Proceed 0.92 miles east on Wilshire Boulevard
Take a left turn on Whittier Drive
Proceed 0.74 miles north on Whittier Drive
You have reached your destination: The Maltz Park
Total travel distance: 2.9 miles

If you’re able to prove to NachenSmall’s reclusive and bizarre CEO, Carey Nachenberg, that
you have the programming skills to build a simple navigation engine, he’ll hire you to build the
full navigation website, and you’ll be rich and famous.

 4

Anatomy of a navigation engine

All navigation systems operate on geolocation data, like the data you can find at Open Street
Maps project:

https://www.openstreetmap.org

Open Street Maps (OSM) is an open-source collaborative effort where volunteers can submit
street map data to the project (e.g., the geolocations of various streets and attractions), and
OSM incorporates this data into its ever-evolving street map database. Companies like Google
and TomTom have their own proprietary street map data as well. In this project, we’ll be using
data from Open Street Maps, because it’s freely available.

The OSM data has geolocation (latitude, longitude) data for each street in its map, as well as for
attractions (e.g., The Maltz Park, Barney’s Beanery, or Engineering VI) in its map. The OSM
data also has geolocation data for some street addresses (e.g., 1031 Broxton Ave), although
since each address must be added manually by a contributor, the database contains few such
street addresses. Each street is broken up into multiple line segments to capture the contours of
the street. As you’ll see, even a simple street like Glenmont Ave (which is a short street that is
just one block long) may be broken up into many segments. This is done to capture the curvy
contours of the street, since each individual segment can only represent a straight line. For
example, here are the segments from OSM for Glenmont Avenue in Westwood - each row has
the starting and ending latitude/longitude of a street segment that makes up a part of the overall
street:

34.0671191, -118.4379955 34.0670930,-118.4377728
34.0670930, -118.4377728 34.0670621,-118.4376356
34.0670621, -118.4376356 34.0669753,-118.4374785
34.0669753, -118.4374785 34.0668906,-118.4373663
34.0668906, -118.4373663 34.0667584,-118.4372616
34.0667584, -118.4372616 34.0660314,-118.4369524
34.0660314, -118.4369524 34.0658228,-118.4368552
34.0658228, -118.4368552 34.0656493,-118.4367430
34.0656493, -118.4367430 34.0654861,-118.4365909
34.0654861, -118.4365909 34.0653477,-118.4363665
34.0653477, -118.4363665 34.0652111,-118.4359814
34.0652111, -118.4359814 34.0651391,-118.4356096

Notice that the ending lat/long of each segment is the same as the starting lat/long of the
following segment, resulting in a contiguous street. And here’s what Glenmont Ave looks like
visually:

 5

Let’s consider the first segment in our list, which is highlighted above in red and blue:

34.0671191, -118.4379955 34.0670930,-118.4377728

If you look up 34.0671191, -118.4379955 in Google Maps (just type in these coordinates into
the Google Maps search bar), you’ll see that this is the location of the intersection of Malcolm
Ave and Glenmont Ave (in the upper-left corner of the map). And if you look up 34.0670930,-
118.4377728, you’ll see that this refers to a spot maybe 100 feet down and right from Malcolm
Ave, at the point at which Glenmont Ave. begins to curve just bit. Notice that the second
segment for Glenmont Ave:

34.0670930, -118.4377728 34.0670621,-118.4376356

is directly connected to the first segment - the ending latitude/longitude of the first segment (in
blue) is exactly the same as the starting latitude/longitude of the second segment (in green). In
this manner, OSM can represent a long curvy street by stitching together multiple connecting
line segments. (By the way, if you’re not familiar with the latitude/longitude system, don’t worry
about it - for the purposes of this project, just assume that these are x,y points on a 2D grid.)

 6

Now let’s look at OSM’s data for Malcolm Ave, which as we see in the map above intersects
with Glenmont Ave. Here are a limited subset of the line segments that make up this much
longer street:

...
34.0679593, -118.4379825 34.0676614,-118.4379719
34.0676614, -118.4379719 34.0673693,-118.4379684
34.0673693, -118.4379684 34.0671191,-118.4379955
34.0671191, -118.4379955 34.0668172,-118.4380882
34.0668172, -118.4380882 34.0665572,-118.4382046
34.0665572, -118.4382046 34.0660665,-118.4385079
34.0660665, -118.4385079 34.0654874,-118.4388836
...

You’ll notice the highlighted line segment in the middle of the list. This line segment begins at
coordinate

34.0671191, -118.4379955

which just happens to be the point of intersection of Glenmont and Malcolm, and was the first
lat/long amongst the segments we showed you above for Glenmont Ave. We can thus see that
these two streets intersect at this point!

So, you can imagine that given a starting geolocation (e.g., 34.0617768, -118.4466596 for 1031
Broxton Ave) and an ending geolocation (e.g., 34.0765967, -118.4196219 for The Maltz Park, a
park in Beverly Hills), and given all of the street coordinates for all of the street segments in the
OSM database, you should be able to find a contiguous chain of segments from the starting

 7

location to the ending location, and then present this route to the user. Each segment that is
part of this route will have its starting latitude, longitude matching the ending latitude, longitude
of the previous segment.

And that’s the goal of this project - to find a (near) optimal route from some starting coordinate
to some ending coordinate!

Right now, you’re probably thinking “There are thousands of streets in LA alone, and tens of
thousands of street segments, how the heck am I supposed to sift through all that data to find a
viable route?” Well, believe it or not, it’s much easier than you think! And by the end of CS32,
you’ll have build your own turn-by-turn navigation system.

Street Map Data File

We will provide you with a simple data file (called mapdata.txt) that contains limited street map
data for the Westwood, West Los Angeles, West Hollywood, Brentwood, and Santa Monica
areas. This data file has a simplified format and was derived from OSM’s more complicated
XML-format data files. Our mapdata.txt file basically has data on thousands of individual street
segments, which together make up the entire map. The file also holds the location of a number
of popular attractions (e.g., In N Out Burger, Engineering IV) that your program will be
responsible for navigating to/from. Here’s an entry for a particular street segment of Gayley Ave.
from the mapdata.txt file:

Gayley Avenue
34.0602175, -118.4464952 34.0597400,-118.4460477
3
Iso Fusion Café|34.0600264, -118.4460993
Native Foods Café|34.0599185, -118.4460044
Novel Cafe Westwood|34.0600033, -118.4465424

The first line of each segment holds the name of the street that this segment is associated with.
In this case, this street segment is part of Gayley Avenue.

The second line holds the starting and ending geo-coordinates of the street segment in latitude,
longitude format.

The third line specifies a count, C, of how many total attractions there are on this particular
street segment.

Finally, there are C lines, one for each attraction found on this particular segment, detailing the
name and geo-coordinates of the attraction separated by a pipe | character. Note: C’s value

 8

may be zero if there are no attractions on the segment. An attraction may be a place of
business (e.g., “Iso Fusion Café”) or a street address (e.g., “1031 Gayley Ave”).

For example, the above data would represent the highlighted street segment below. You can
see the attractions (Iso Fusion Cafe, Native Foods Cafe, and Novel Cafe) all represented on the
map:

Here’s a slightly longer example from our map data file:

...
Glendon Avenue
34.0591340, -118.4426546 34.0589680,-118.4424895
0
Glendon Avenue
34.0589680, -118.4424895 34.0582358,-118.4421816
1
Pierce Brothers Westwood Village Memorial Park|34.0587141, -118.4418438
Glendon Avenue
34.0582358, -118.4421816 34.0572000,-118.4417620
1
CVS|34.0575488, -118.4423488
Wellworth Avenue
34.0575140, -118.4405712 34.0572000,-118.4417620

 9

0
…

Notice how the first Glendon Avenue segment has an ending geo-coordinate that matches the
second Glendon Avenue segment’s starting geo coordinate (34.0589680,-118.4424895).
Further, notice that the second Glendon Avenue segment has an ending geo-coordinate that
matches the starting geo-coordinate for the third Glendon Avenue segment (34.0582358, -
118.4421816). So these three segments are effectively chained together by their start/end
coordinates. Now consider the Wellworth Avenue segment. Its ending coordinate (34.0572000,-
118.4417620) is the same as the ending geo-coordinate of the third Glendon Avenue segment.
So this means that this location defines an intersection between Glendon Avenue and Wellworth
Avenue. And in fact, if you look this up in Google maps, this is what you’ll see:

So now you know how our mapping data is encoded. And hopefully you’re beginning to see that
if you have some clever data structures, given any geo-coordinate, you can determine all
segments that start or end at that point. You could then follow each such segment to its other
end, and figure out what segments it’s connected to, and so on.

What Do You Need to Do?

For this project you will create five classes (each will be described below in more detail):

1. You will create a class template MyMap which works much like the C++ STL map and
which must use a binary search tree as its data structure. This class template will hold
associations between an arbitrary type of key (e.g., a string containing an attraction

 10

name like “Barney’s Beanery”) with an arbitrary type of value (e.g., a latitude/longitude
where that attraction is located).

2. You will create a class MapLoaderImpl that is used to load up the data from the
mapdata.txt file that we provide, so the data can be used by your program.

3. You will create a class AttractionMapperImpl that can be used to look up an attraction by
name, e.g. “Mongol BBQ”, and will return that attraction’s geo-coordinate, if it was found
in our data file.

4. You will create a class SegmentMapperImpl that can be used to look up a geo-
coordinate (e.g., a latitude/longitude) and will return all segment(s) that are associated
with that coordinate. That is, it will return all segments that either start at the specified
geo-coordinate, end at the specified geo-coordinate, or have an attraction with the
specified geo-coordinate located on the segment.

5. You will build a class called NavImpl that allows the user to specify a starting attraction
(e.g., “Mongol BBQ”), an ending attraction (e.g., “Getty Conservation Institute”), and will
then return a vector of turn-by-turn directions required to get from the starting point to the
ending point.

What Will We Provide?

 We’ll provide you with a header file named provided.h which you must not modify. It defines:

● A GeoCoord struct that you can use to hold a particular latitude/longitude, and a
GeoSegment struct that defines a segment consisting of starting and ending
GeoCoords.

● Functions to compute the distance between two GeoCoords, the angle of a
GeoSegment, and the angle between two GeoSegments (i.e., street segments).

● A StreetSegment struct that holds details of a street segment loaded from a map data
file: the name of the street segment, its starting and ending geocoordinates, and a
vector of attractions on that segment.

● A NavSegment class. The Navigator’s navigate() method returns its routing directions as
a sequence of these NavSegments. Each NavSegment holds data on either (a) one
segment of the route (e.g., a street name, and the segment’s starting and ending geo-
coordinates), or (b) a turn instruction, detailing a turn that must be made between two
segments in the route.

● MapLoader, AttractionMapper, SegmentMapper, and Navigator classes. The code you
write will implement these classes.

We’ll provide a simple main.cpp file that brings your entire program together and lets you test it.
You MUST not modify this file, as you will not turn it in with your solution. (Of course, you can
modify it during development, but the program you turn in must work correctly with the main.cpp
that we provided.)

 11

We also provide you with two data files:

● mapdata.txt: Contains all of the mapping data (latitudes and longitudes for each street,
street names, etc.) that you have to process in your program.

● validlocs.txt: Contains a list of attraction names/addresses (e.g., “Engineering IV” or
“Barney’s Beanery”) extracted from mapdata.txt that you can route from or route to when
testing your program.

Our Test Driver

If you compile your code with our main.cpp file, you can use it to test your completed classes.
Our main.cpp file implements a command-line interface, meaning that if you open a
Windows/MacOS Command Shell (e.g., by typing “cmd.exe” in the Windows start box in the
bottom-left corner of the screen, or by running the Terminal app in MacOS), and switch to the
directory that holds your compiled executable file, you can run our test harness code.

From the command line, you can run the test harness as follows:

 C:\PATH\TO\YOUR\CODE> BruinNav.exe c:\path\to\the\mapdata.txt "start location name" "end location name”

So, for example, if you wanted our test driver to test out your navigation code to get directions
from 1031 Broxton Ave. to The Maltz Park, you’d write:

 C:\cs32\p4> BruinNav.exe c:\cs32\p4\mapdata.txt "1031 Broxton Ave." “The Maltz Park”

Our test program will then run, take the inputs you passed on the command line (e.g., The Maltz
Park) and pass them to your classes so they can load the appropriate map data and generate a
route. The test program will then take the results from your classes (e.g., routing instructions
passed back in a vector), and print them to the screen like this:

You are starting at: 1031 Broxton Avenue
Proceed 0.09 miles southeast on Broxton Avenue
Turn left onto Kinross Avenue
Proceed 0.07 miles east on Kinross Avenue
Turn right onto Glendon Avenue
Proceed 0.08 miles southeast on Glendon Avenue
Turn left onto Lindbrook Drive
Proceed 0.93 miles east on Lindbrook Drive
Turn right onto Holmby Avenue
Proceed 0.08 miles southeast on Holmby Avenue
Turn left onto Wilshire Boulevard
Proceed 0.92 miles east on Wilshire Boulevard
Turn left onto Whittier Drive
Proceed 0.74 miles north on Whittier Drive

 12

You have reached your destination: The Maltz Park
Total travel distance: 2.9 miles

You can then manually check your solution using Google maps!

Details: The Classes You Must Write

You must write correct versions of the following classes to obtain full credit on this project. Your
classes must work correctly with our provided classes (with no modifications to our provided
classes).

MyMap

You must implement a template class named MyMap that, like an STL map, lets a client
associate items of a key type with items of a (usually different) value type, with the ability to look
up items by key. For example, a MyMap object associating students' names with their GPAs
would have string as the key type and double as the value type. Your implementation must use
a binary search tree.

Here's an example of how you might use MyMap:

void foo()
{
 MyMap<string,double> nameToGPA; // maps student name to GPA

 // add new items to the binary search tree-based map
 nameToGPA.associate("Carey", 3.5); // Carey has a 3.5 GPA
 nameToGPA.associate("David", 3.99); // David beat Carey
 nameToGPA.associate("Abe", 3.2); // Abe has a 3.2 GPA

 double* davidsGPA = nameToGPA.find("David");
 if (davidsGPA != nullptr)
 *davidsGPA = 1.5; // after a re-grade of David’s exam

 nameToGPA.associate("Carey", 4.0); // Carey deserves a 4.0
 // replaces old 3.5 GPA

 double* lindasGPA = nameToGPA.find("Linda");
 if (lindasGPA == nullptr)
 cout << "Linda is not in the roster!" << endl;
 else
 cout << "Linda’s GPA is: " << *lindasGPA << endl;

 13

}

Your implementation must have the following interface:

template	
 <typename	
 KeyType,	
 typename	
 ValueType>
class	
 MyMap
{
public:
	
 MyMap();	
 	
 	
 	
 	
 	
 	
 	
 //	
 constructor
	
 ~MyMap();	
 	
 	
 	
 	
 	
 	
 //	
 destructor;	
 deletes	
 all	
 of	
 the	
 tree's	
 nodes
	
 void	
 clear();	
 	
 	
 //	
 deletes	
 all	
 of	
 the	
 trees	
 nodes	
 producing	
 an	
 empty	
 tree
	
 int	
 size()	
 const;	
 //	
 return	
 the	
 number	
 of	
 associations	
 in	
 the	
 map
	

	
 	
 	
 //	
 The	
 associate	
 method	
 associates	
 one	
 item	
 (key)	
 with	
 another	
 (value).
	
 	
 	
 //	
 If	
 no	
 association	
 currently	
 exists	
 with	
 that	
 key,	
 this	
 method	
 inserts
	
 	
 	
 //	
 a	
 new	
 association	
 into	
 the	
 tree	
 with	
 that	
 key/value	
 pair.	
 	
 If	
 there	
 is
	
 	
 	
 //	
 already	
 an	
 association	
 with	
 that	
 key	
 in	
 the	
 tree,	
 then	
 the	
 item
	
 	
 	
 //	
 associated	
 with	
 that	
 key	
 is	
 replaced	
 by	
 the	
 second	
 parameter	
 (value).
	
 	
 	
 //	
 Thus,	
 the	
 tree	
 contains	
 no	
 duplicate	
 keys.
	
 void	
 associate(const	
 KeyType&	
 key,	
 const	
 ValueType&	
 value);
	

	
 	
 	
 //	
 If	
 no	
 association	
 exists	
 with	
 the	
 given	
 key,	
 return	
 nullptr;	
 otherwise,
	
 	
 	
 //	
 return	
 a	
 pointer	
 to	
 the	
 value	
 associated	
 with	
 that	
 key.	
 	
 This	
 pointer	
 can	
 be
	
 	
 	
 //	
 used	
 to	
 examine	
 that	
 value,	
 and	
 if	
 the	
 map	
 is	
 allowed	
 to	
 be	
 modified,	
 to
	
 	
 	
 //	
 modify	
 that	
 value	
 directly	
 within	
 the	
 map	
 (the	
 second	
 overload	
 enables
	
 	
 	
 //	
 this).	
 	
 Using	
 a	
 little	
 C++	
 magic,	
 we	
 have	
 implemented	
 it	
 in	
 terms	
 of	
 the
	
 	
 	
 //	
 first	
 overload,	
 which	
 you	
 must	
 implement.
	
 const	
 ValueType*	
 find(const	
 KeyType&	
 key)	
 const;
	
 ValueType*	
 find(const	
 KeyType&	
 key);
};

Requirements for MyMap
	

Here are the requirements for your MyMap class:

1. You must implement your own binary search tree in your MyMap class (i.e., define your
own Node struct/class, maintain a root/head pointer, etc). You may assume that the key
type of any instantiation of the MyMap template class has appropriate comparison
operators (<, <=, >, >=, ==, and !=) defined for it (certainly ints and strings do).

2. Your MyMap class must be a template class, to enable a client to map one type of item
to any other type of item, e.g., a name (string) to a GPA (double), or a name (string) to a
collection of the person’s test scores (a vector of ints).

3. Your MyMap class must use the public interface documented above. You may add only
private members to this class; you must not add other public members to MyMap.

 14

4. Your MyMap class does not need to implement deletion of an individual association
(unless you really want to) and does not need to attempt to keep the tree balanced
(unless you’re masochistic).

5. If a user of your class associates the same key twice (e.g., “David” to 3.99, then “David”
to 1.5), the second association must overwrite the first one (i.e., "David" will no longer be
associated with 3.99, but will henceforth be associated with 1.5). There must be at most
one mapping for any key.

6. MyMap objects do not need to be copied or assigned. To prevent incorrect copying and
assignment of MyMap objects, these methods can be declared to be deleted (C++11) or
declared private and left unimplemented (pre-C++11).

7. Your member functions MUST not write anything out to cout. They may write to cerr if
you like (to help you with debugging).

MapLoader

The MapLoader class is used to load data from our provided mapdata.txt file. Here is the
required public interface of the MapLoader class:

class	
 MapLoader
{
public:
	
 MapLoader();
	
 ~MapLoader();	

	
 bool	
 load(std::string	
 mapFile);	

	
 size_t	
 getNumSegments()	
 const;	

	
 bool	
 getSegment(size_t	
 segNum,	
 StreetSegment&	
 seg)	
 const;
};

After constructing a MapLoader object, the client calls the object’s load() method, passing in the
name of a map data file. Your load() method must load all of the data from the specified map
data file into a container of StreetSegments (you may use a vector or other dynamic array to
hold your data). You’ll need to ensure that you’ve loaded every street segment from the file,
each into its own StreetSegment object. The format of the map data file is specified above in the
Street Map Data File section.

You’ll have to use the ifstream class to open our data file and read the data line by line from this
file into your MapLoader object (see the File I/O writeup on the class web site). The load()
method must return true if the data was loaded successfully, and false otherwise. You may
assume that the data in the map data file is formatted correctly as detailed in this specification,
so you don’t have to check for errors in its format.

 15

Once you have loaded the data, a call to getNumSegments() must return the total number of
segments loaded. Otherwise, a call to getNumSegments() must return 0.

A call to getSegment() must retrieve the StreetSegment associated with the specified segment
number (segNum must be between 0 and getNumSegments()-1), and place it in the seg
reference parameter. If the specified segment number is invalid (out of bounds), then the
method must return false, leaving seg unchaged. Otherwise, it must return true and fill in the
seg parameter.

The filled-in seg parameter must be completely filled in if the function is successful, containing
proper field values for streetName and segment, and a properly filled in attractions vector.

To ensure that you do not change the interface to the MapLoader class in any way, we will
implement that class for you. But don't get your hopes up that we're doing any significant work
for you here: Our implementation is to simply give MapLoader just one private data member, a
pointer to a MapLoaderImpl object (which you can define however you want in MapLoader.cpp).
The member functions of MapLoader simply delegate their work to functions in MapLoaderImpl.1
You still have to do the work of implementing those functions.

Other than MapLoader.cpp, no source file that you turn in may contain the name
MapLoaderImpl. Thus, your other classes must not directly instantiate or even mention
MapLoaderImpl in their code. They may use the MapLoader class that we provide (which
indirectly uses your MapLoaderImpl class).

Requirements for MapLoader

Here are the requirements for your MapLoaderImpl class that implements the MapLoader
functionality:

1. It must adhere to the specification above.
2. It must not access any other Impl classes that you write.
3. It must not use any STL associative containers (i.e., map, multimap, set, multiset, or the

unordered_ versions of those classes). It may use the STL vector, list, stack, queue,
and priority_queue classes if you wish.

4. It must not write anything to cout. It may write to cerr if you with (to help you with
debugging).

5. If there are N lines in the input mapping data file, then load() must run in O(N) time, and
getNumSegments() and getSegment() must run in O(1) time.

1 This is an example of what is called the pimpl idiom (from "pointer-to-implementation").

 16

AttractionMapper

The AttractionMapper class is used to look up an attraction name (e.g., “Engineering VI” or
“1049 Gayley Avenue”) and find the GeoCoord associated with that attraction name.

class	
 AttractionMapper
{
public:
	
 AttractionMapper();
	
 ~AttractionMapper();	

	
 void	
 init(const	
 MapLoader&	
 ml);	

	
 bool	
 getGeoCoord(std::string	
 attraction,	
 GeoCoord&	
 gc)	
 const;
};
	

After constructing an AttractionMapper object, a client will first call the init() method, passing in a
MapLoader object (which has already been loaded up with map data). The init() method uses
that object to construct an efficient data structure that allows the getGeoCoord() method to
quickly find the GeoCoord that is associated with the specified attraction name. If
getGeoCoord() finds the attraction, it sets the gc parameter to the corresponding GeoCoord and
returns true; otherwise, it leaves gc unchanged and returns false. The function is case
insensitive, so “barneY’s BEANery” and “barney’s beanery” would match an attraction name of
“Barney’s Beanery” as found in the mapdata.txt file. This function must run in O(log N) time on
average, where N is the number of attraction-to-geolocation mappings in the data structure.

Here’s an example of how you might use this class:

#include "provided.h" // defines class AttractionMapper

void example(const MapLoader& ml)
{

AttractionMapper am;
am.init(ml); // let our object build its internal data structures
 // by iterating thru all segments from the MapLoader object
GeoCoord fillMe;
string attraction = "The Coffee Bean & Tea Leaf";

bool found = am.getGeoCoord(attraction, fillMe);
if (! found)
{
 cout << "No geolocation found for " << attraction << endl;
 return;
}

cout << "The location of " << attraction << " is " <<

 << fillMe.sLatitude << ", " << fillMe.sLongitude << endl;

 17

}

As with the other classes you must write, the real work will be implementing the auxiliary class
AttractionMapperImpl in AttractionMapper.cpp. Other than AttractionMapper.cpp, no source
file that you turn in may contain the name AttractionMapperImpl. Thus, your other classes
must not directly instantiate or even mention AttractionMapperImpl in their code. They may use
the AttractionMapper class that we provide (which indirectly uses your AttractionMapperImpl
class).

Requirements for AttractionMapper

Here are the requirements for your AttractionMapperImpl class:

1. It must adhere to the specification above.
2. It must not access any other Impl classes that you write.
3. It must use your MyMap class template, and must not use any STL containers — no

map, no vector, no list, etc.
4. It must not write anything to cout. It may write to cerr if you with (to help you with

debugging).
5. If there are N total street segments in the input mapping data, and A total attractions

dispersed throughout the streets, then your init() method must run in O(N+A*log(A)) time
on average, and your getGeoCoord() must run in O(log(A)) time on average. You may
assume that the map data being loaded is randomly ordered.

SegmentMapper

The SegmentMapper class is used to look up a geocoordinate (a latitude/longitude pair) and
find the one or more StreetSegments associated with that coordinate. A StreetSegment is
associated with a geocoordinate if:

1. The StreetSegment starts at that geocoordinate
2. The StreetSegment ends at that geocoordinate
3. The StreetSegment has an attraction on it with that geocoordinate

class	
 SegmentMapper
{
public:
	
 SegmentMapper();
	
 ~SegmentMapper();	

	
 void	
 init(const	
 MapLoader&	
 ml);	

	
 std::vector<StreetSegment>	
 getSegments(const	
 GeoCoord&	
 gc)	
 const;
};
 	

 18

After constructing a SegmentMapper object, a client will first call the init() method, passing in a
MapLoader object (which has already been loaded up with map data). The init() method uses
that object to construct an efficient data structure that allows the getSegments() method to
quickly find all StreetSegments that are associated with the specified geocoordinate. The
getSegments() method returns a vector containing all those StreetSegment; if there are no
StreetSegments associated with that geocoordinate, the returned vector will be empty.

Here’s an example of how you might use this class:

#include "provided.h" // defines class SegmentMapper

void example(const MapLoader& ml)
{

SegmentMapper sm;
sm.init(ml); // let our object build its internal data structures
 // by iterating thru all segments from the MapLoader object

GeoCoord lookMeUp("34.0572000", "-118.4417620");

std::vector<StreetSegment> vecOfAssociatedSegs(sm.getSegments(lookMeUp));
if (vecOfAssociatedSegs.empty())
{
 cout << “Error - no segments found matching this coordinate\n”;
 return;
}

cout << "Here are all the segments associated with your coordinate:" << endl;

for (auto s: vecOfAssociatedSegs)
{
 cout << "Segment’s street: " << s.streetName << endl;
 cout << "Segment’s start lat/long: " << s.segment.start.sLatitude << ", " <<

 s.segment.start.sLongitude << endl;
 cout << "Segment’s end lat/long: " << s.segment.end.sLatitude << ", " <<

 s.segment.end.sLongitude << endl;
 cout << "This segment has " << s.attractionsOnThisSegment.size() <<
 " attractions on it." << endl;

}
}

As with the other classes you must write, the real work will be implementing the auxiliary class
SegmentMapperImpl in SegmentMapper.cpp. Other than SegmentMapper.cpp, no source
file that you turn in may contain the name SegmentMapperImpl. Thus, your other classes
must not directly instantiate or even mention SegmentMapperImpl in their code. They may use
the SegmentMapper class that we provide (which indirectly uses your SegmentMapperImpl
class).

 19

Requirements for SegmentMapper

Here are the requirements for your SegmentMapperImpl class:

1. It must adhere to the specification above.
2. It must not access any other Impl classes that you write.
3. It must use your MyMap class template, and must not use any STL associative

containers (i.e., map, multimap, set, multiset, or the unordered_ versions of those
classes). It may use the STL vector, list, stack, queue, and priority_queue classes if you
wish.

4. It must not write anything to cout. It may write to cerr if you with (to help you with
debugging).

5. If there are N total street segments in the input mapping data, and A total attractions
dispersed throughout the streets, then your init() method must run in O((N+A)*log(N+A))
time on average, and your getSegments() must run in O(log(N+A)) time on average. You
may assume that the map data being loaded is randomly ordered.

Navigator

The Navigator class is responsible for computing an efficient route from a source attraction to a
destination attraction, if one exists. It must use the AttractionMapper, SegmentMapper, and
MapLoader classes to do so.

class	
 Navigator
{
public:
	
 Navigator();
	
 ~Navigator();	

	
 bool	
 loadMapData(std::string	
 mapFile);	

	
 NavResult	
 navigate(std::string	
 start,	
 std::string	
 end,	

	
 	
 	
 	
 	
 std::vector<NavSegment>&	
 directions)	
 const;
};

After constructing a Navigator object, the client calls the object’s loadMapData() method,
passing in the name of a map data file. Your loadMapData() method must load all
required data and initialize all internal data structures (including perhaps an AttractionMapper
and a SegmentMapper). The loadMapData() method must return true if the data was loaded
successfully, and false otherwise. You may assume that the data in the map data file is
formatted correctly as detailed in this specification, so you don’t have to check for errors in its
format.

After having loaded the map data, a client can then call the navigate() method, passing in:

 20

● A starting attraction name or address, e.g. “Westwood Sporting Goods” or “1031 Broxton

Avenue”
● An ending attraction name or address, e.g. “Easton Softball Stadium”
● A vector to be filled in by the navigate() function if it finds a valid route from the starting

attraction to the ending attraction. If the vector passed in is not empty, then the
navigate() method must clear it before filling it in with results.

Note: The validlocs.txt file that we provide contains a list of attraction names/addresses
extracted from mapdata.txt that you can use when testing your program.

Your navigate() method must return one of the following codes, depending on the result:

● NAV_SUCCESS: A path was found from the source to the destination.
● NAV_BAD_SOURCE: The source attraction or street address that was passed in was

not found in our data file, and therefore the system can’t route from it.
● NAV_BAD_DESTINATION: The destination attraction or street address that was passed

in was not found in our data file, and therefore the system can’t route to it.
● NAV_NO_ROUTE: No route was found linking the source to the destination address.

If your navigate() function can find a valid, connecting set of segments from the source
attraction/address to the destination attraction/address, it must fill the directions vector
parameter with a sequence of NavSegments that represent turn-by turn directions. Note: A
NavSegment is different than a StreetSegment and a GeoSegment. NavSegments are used to
convey turn-by-turn directions to the user. There are two types of NavSegments: Proceed-style
NavSegments and Turn-style NavSegments.

A Proceed-style NavSegment specifies a starting latitude/longitude of the segment, an ending
latitude/longitude of the segment, the compass direction of travel from start to end (e.g., north,
southwest, etc.), the distance in miles to travel, and the name of the street being travelled on
(e.g., Broxton Avenue). You can determine the distance by using distanceEarthMiles() and the
compass direction by using angleOfLine(), both functions being defined in the provided.h file2:

● 0 degrees <= travelAngle <= 22.5 degrees: east
● 22.5 degrees < travelAngle <= 67.5 degrees: northeast
● 67.5 degrees < travelAngle <= 112.5 degrees: north
● 112.5 degrees < travelAngle <= 157.5 degrees: northwest
● 157.5 degrees < travelAngle <= 202.5 degrees: west
● 202.5 degrees < travelAngle <= 247.5 degrees: southwest
● 247.5 degrees < travelAngle <= 292.5 degrees: south
● 292.5 degrees < travelAngle <= 337.5 degrees: southeast
● 337.5 degrees < travelAngle < 360 degrees: east

2 Note: Unlike typical compass angles, where 0 degrees is due north, our angleOfLine() function returns 0
degrees facing due east.

 21

A Turn-style NavSegment specifies a direction to turn (left or right), and the name of the street
that’s being turned onto. A turn of less than 180 degrees from one segment onto another
indicates a left turn. A turn of 180 degrees or more indicates a right turn.

Your outputted direction vector must have exactly one Proceed-style NavSegment for each
GeoSegment segment travelled over.

Your direction vector must have exactly one Turn-style NavSegment when a transition is made
from a first GeoSegment associated with street A to a second GeoSegment associated with
street B, where A != B. You must not have a turn-style NavSegment when proceeding between
two segments with the same street name (i.e., where A == B).

To illustrate how the navigate() method must fill in its directions vector, let’s go through a simple
example. Let’s assume that we’re navigating between “1061 Broxton Avenue” and
“Headlines” (on Kinross Avenue). Here’s a map that shows the route, along with the various
segments as found in the mapdata.txt file:

 22

And here’s the raw street segment data from our mapdata.txt file (We’ve added segment #s in
parenthesis to make referencing the segments easier):

Broxton Avenue (Segment #1)
34.0620596, -118.4467237 34.0613323,-118.4461140
9
1031 Broxton Avenue|34.0617768, -118.4466596
1037 Broxton Avenue|34.0615332, -118.4468449
1045 Broxton Avenue|34.0616887, -118.4465843
1055 Broxton Avenue|34.0612865, -118.4466416
1061 Broxton Avenue|34.0613269, -118.4462765
Ami Sushi|34.0614911, -118.4464410
Barney's Beanery|34.0617224, -118.4466561
Five Guys|34.0613946, -118.4463597
Regent|34.0615961, -118.4465521

 23

Broxton Avenue (Segment #2)
34.0613323, -118.4461140 34.0609137,-118.4457707
2
1067 Broxton Avenue|34.0612157, -118.4461814
1073 Broxton Avenue|34.0611019, -118.4460843
Broxton Avenue (Segment #3)
34.0608001, -118.4457307 34.0607063,-118.4457055
0
Kinross Avenue (Segment #4)
34.0607063, -118.4457055 34.0604893,-118.4460593
0
Kinross Avenue (Segment #5)
34.0604893, -118.4460593 34.0602175,-118.4464952
3
10925 Kinross Avenue|34.0606777, -118.4466919
Bel Air Camera|34.0604846, -118.4464268
Headlines!|34.0602020, -118.4462382

For the moment, let’s gloss over how your navigate() method actually computes an efficient
route (you may assume that there’s some way to do this), and just consider what a valid output
directions vector might look like upon the method’s successful completion.

The first entry in all directions vectors must contain a proceed-style NavSegment whose start
GeoCoord is the latitude/longitude of the source attraction, and whose end GeoCoord is the
latitude/longitude of one of the ends of the GeoSegment containing that attraction, where the
navigation system wants the user to travel to next. The direction travelled is determined by
computing the angle between the starting and ending coordinates of the NavSegment, and
using this to determine the compass direction (e.g., east, southeast), etc. according to the
formula in the section above.

So, in the above example of navigating from 1061 Broxton to Headlines!, the first NavSegment’s
value would be:

directions[0]:
 type: PROCEED
 start: 34.0613269, -118.4462765
 end: 34.0613323,-118.4461140
 direction: “east”
 distance: 0.00930891
 street: “Broxton Avenue”

You’ll notice that the start coordinate is the geolocation of 1061 Broxton Avenue (see the
attractions listed under the data for Segment #1 above), and the end coordinate is the

 24

geolocation of the south end of Segment #1, since the navigation system wants us to travel
east3 down Broxton.

The second NavSegment takes us from the end of Segment #1 (34.0613323,-118.4461140…
which also happens to be the start of Segment #2) to the end of Segment #2:

directions[1]:
 type: PROCEED

start: 34.0613323,-118.4461140
 end: 34.0609137,-118.4457707
 direction: “southeast”
 distance: 0.0349664
 street: “Broxton Avenue”

Notice that we didn’t have a Turn-style NavSegment between directions[0] and directions[1],
since we’re proceeding down the same street, Broxton Avenue, rather than turning to a new
street.

The third NavSegment takes us from the end of Segment #2 (34.0609137,-118.4457707…
which also happens to be the start of Segment #3) to the end of Segment #3:

directions[2]:

type: PROCEED
 start: 34.0609137,-118.4457707
 end: 34.0607063,-118.4457055
 direction: “southeast”
 distance: 0.014808
 street: “Broxton Avenue”

At this point, we’re turning onto a new street. So we must have a Turn NavSegment next in our
direction vector:

directions[3]:

type: TURN
 direction: “right”
 street: “Kinross Avenue”

The fifth NavSegment takes us from the end of Segment #3 (34.0607063,-118.4457055… which
also happens to be the start of Segment #4) to the end of Segment #4:

3 It would appear that we’re traveling southeast down Broxton, but since the start coordinate is 1061
Broxton, which is in the middle of the street, the path to the south end of Segment #1 actually takes us
more eastward than southeast.

 25

directions[4]:
type: PROCEED

 start: 34.0607063,-118.4457055
 end: 34.0604893,-118.4460593
 direction: “southwest”
 distance: 0.0251977
 street: “Kinross Avenue”

The sixth NavSegment takes us from the end of Segment #4 (34.0604893,-118.4460593…
which also happens to be the start of Segment #5) to the end destination of Headlines!
(34.0602020, -118.4462382) which is located on Segment #5:

directions[5]:

type: PROCEED
 start: 34.0604893,-118.4460593
 end: 34.0602020,-118.4462382
 direction: “southwest”
 distance: 0.0223362
 street: “Kinross Avenue”

And now we have reached our destination!

A few things you should notice:

1. The first NavSegment must always have the source attraction as its start coordinate, and
one of the ends of the GeoSegment that holds the source attraction as its end
coordinate, with one exception: If the source attraction and destination attraction are on
the same GeoSegment (e.g., both 1031 Broxton and 1061 Broxton are on Segment #1),
then the start coordinate will be that of the source attraction, and the end coordinate will
be that of the destination attraction (and there will be only one NavSegment in your
direction vector).

2. If the start attraction and end attraction are on different GeoSegments, then we will have
one or more NavSegments following the first NavSegment:

a. If two adjacent GeoSegments are for the same street (like Segment #1 and
Segment #2, or Segment #2 and Segment #3), then you simply add successive
Proceed-style NavSegments in your directions vector.

b. If two adjacent GeoSegments are for a different street (like Segment #3 and
Segment #4), then you must add a Turn-style NavSegment to your direction
vector in between the two streets, indicating that a turn must be made between
the two streets.

3. Your final NavSegment must always have the destination attraction as its end
coordinate, and one of the ends of the GeoSegment that holds the destination attraction
as its start coordinate (unless of course, both attractions are on the same GeoSegment,
as explained in #1 above).

 26

4. For all Proceed NavSegments for the same street, except for the first and last, the j+1st
NavSegment’s start coordinate must be the same as the jth NavSegment’s end
coordinate, unless there is a Turn NavSegment in between two Proceed NavSegments,
in which the jth NavSegment’s end coordinate must be the same as the j+2nd
NavSegment’s start coordinate, with a Turn NavSegment in position j+1.

As with the other classes you must write, the real work will be implementing the auxiliary class
NavigatorImpl in Navigator.cpp. Other than Navigator.cpp, no source file that you turn in
may contain the name NavigatorImpl. Thus, your other classes must not directly instantiate
or even mention NavigatorImpl in their code. They may use the Navigator class that we provide
(which indirectly uses your NavigatorImpl class).

Requirements for Navigator

Here are the requirements for your NavImpl class:

1. It must adhere to the specification above.
2. It must not access any other Impl classes that you write.
3. It must not use any STL associative containers (i.e., map, multimap, set, multiset, or the

unordered_ versions of those classes). It may use the STL vector, list, stack, queue,
and priority_queue classes if you wish. It may use your MyMap class template.

4. It must not write anything to cout. It may write to cerr if you with (to help you with
debugging).

5. Assuming there are N total segments and A total attractions in our mapping data, your
navigate() method must run in O((A+N)*log(A+N)) time. However, if you implement your
route-finding algorithm efficiently, it should generally run in far less time.

How to Implement a Route-finding Algorithm

Right now you’re probably thinking: “It’s got to be rocket science to compute an optimal route
between two coordinates on a map… only a company as awesome as Google could do that :)”.
But in fact, nothing could be further from the truth! It’s possible to implement an optimal routing
algorithm in just a few hundred lines of code (or less!) using an algorithm known as A*. You’re
welcome to use A* if you like, but if you’re a little intimidated by this, why not use an algorithm
like the queue-based maze searching algorithm you implemented in your homework?

Of course, there are a few differences between maze-searching and geo-navigation:

1. In your original queue-based maze searching algorithm, you enqueued integer-valued
x,y coordinates, whereas in this project you’re enqueuing real-valued latitude, longitude
coordinates.

2. In your original maze searching algorithm, you “dropped breadcrumbs” in your maze
array to prevent your algorithm from visiting the same square more than once, whereas

 27

in this project, there’s no 2D array that you can use to track whether you’ve visited a
square, so you’ll have to figure out some other way to prevent your algorithm from re-
visiting the same coordinates over and over.

3. In the original maze-searching algorithm, you could determine adjacent squares of the
maze to explore through simple arithmetic - if you were at position (x,y) of the maze, you
knew that the adjacent maze locations were (x-1,y), (x+1,y), (x,y-1), and (x,y+1). In this
project, you’re going to have to leverage the SegmentMapper class to locate adjacent
coordinates, and the AttractionMapper to obtain your start and destination coordinates.

4. In the original maze-searching algorithm, you just had to determine if the maze was
solvable and return a boolean result (true or false). But for this project, you’ll have to
actually return back a full vector of segments to provide turn-by-turn directions.

But, with just a few changes, you should be able to adapt your queue-based maze searching
algorithm to one that does street navigation! Of course, you’re still going to have to figure out
how to return the whole route (segment-by-segment directions) back to the user. You can’t just
search and verify that a route exists like in your maze-searching homework - you have to return
each segment that makes up that route!

How might you track the complete segment-by-segment route so you can return it back to the
user? Well, one way to do so would be to maintain a map (using your templated MyMap class)
that associates a given geo-coordinate G to the previous geo-coordinate P in the route (e.g., we
travelled to G directly from P). Let’s call this map: locationOfPreviousWayPoint

Let’s illustrate the approach with an example containing 4 segments:

● Segment A-B: Contains the starting location, A’ (e.g., Barney’s Beanery)
● Segment B-C: Connected to Segment A-B at geo-coordinate B
● Segment C-D: Connected to Segment B-C at geo-coordinate C, contains destination

location D’ (e.g., Engineering VI)

Let’s assume that your queue-based search algorithm is searching for a path from A’ to D’.
Starting from point A’, its algorithm might discover that A’ is on segment A-B, and therefore
enqueue points B and A (the two ends of the segment containing A’) for exploration by the
algorithm. At this point, the algorithm would add the following two associations to your map:

locationOfPreviousWayPoint[B] -> A’
locationOfPreviousWayPoint[A] -> A’

The first association indicates that we reached location B directly from location A’. The second
association similarly indicates we reached location A directly from location A’.

Next, the algorithm might dequeue point B, and determine that it can reach geo-coordinate C
from B. It would add C to its queue for later exploration. And, again, it would add the fact that it
reached C from B to its waypoint map:

 28

locationOfPreviousWayPoint[C] -> B

A bit later (after processing geo-coordinate A in the queue, which we’ll omit for brevity), the
algorithm might dequeue geo-coordinate C from the queue. From geo-coordinate C, the
algorithm could then determine that attraction D’ is on segment C-D, and that it has found the
destination attraction. Again, it could add this fact to the map:

locationOfPreviousWayPoint[D’] -> C

So every time we reach a new waypoint (e.g., B or C or D’), the algorithm could add an entry to
the locationOfPreviousWayPoint map that maps that waypoint to the geo-coordinate that we
traveled from to get to that waypoint.

When we finally reach point D’, our map might contain:

locationOfPreviousWayPoint[B] -> A’
locationOfPreviousWayPoint[A] -> A’
locationOfPreviousWayPoint[C] -> B
locationOfPreviousWayPoint[D’] -> C
...

So how can we use this map to reconstruct our route from A’ to D’? Well, starting from our
destination point - location D’ - we can look up D’ in the map to determine how we got there
(from C). This tells us that our last segment in our navigation was (C,D’). We can then lookup
point C in our map and determine that we got there from point B. This tells us that the next to
last segment was (B,C). And so on. Eventually we’ll reach point A’, our starting point, allowing
us to complete the first segment (A’,B), and we’ll have re-created the complete route. Each of
these discovered segments can be added to a vector and then returned to the user.

Since, like the maze searching algorithm, your navigation algorithm must only visit each geo-
coordinate once (otherwise it would potentially go in circles), you’re guaranteed to have a single
entry for each point in your locationOfPreviousWayPoint map for each geo-coordinate, enabling
you to easily reconstruct the route. There should never be a case where the map has to
associate a given waypoint with more than one previous coordinate. Cool, huh?

So, intuitively, what does your overall navigation algorithm do? Well, it basically moves out from
the starting attraction in concentric growing rings. It starts by locating the start and end
GeoCoords of the segment that holds our starting attraction and adds them to our queue. It then
finds all segments associated with these first two GeoCoords and adds the other ends of their
segments to our queue. It then finds all segments associated with these GeoCoords and adds
the other ends of their segments to our queue. And so on, and so on. Eventually, either the
algorithm stumbles upon the segment that holds our destination attraction, or it will work our
way through the entire street map, completely empty out our queue, and realize that the

 29

destination can’t be reached. If and when the algorithm finds the ending attraction, it can then
use the locationOfPreviousWayPoint map to trace a path back from the ending location to the
starting location, following each geolocation it traversed back to the one just before it, and to the
one before it, all the way to the start attraction.

Now if you think hard, you’ll realize that this algorithm won’t necessarily find the shortest path (in
miles) from your source attraction to the destination attraction. It will, however, find the path with
the fewest number of segments between your source to your destination and return it to you.
But the path with the smaller number of segments won’t necessarily result in the shortest/fastest
path. Consider a case where there are three points: A, B and C all on a straight line. A is at
position 0, B is at position 10 miles, and C is at position 100 miles. There are two sets of roads
that can take us from point A to point B:

● A curvy road that has 20 segments that proceed directly from A to B, with a total
distance of 10 miles.

● A straight road that has 1 segment that proceeds from A to C (100 miles), and then a
second straight segment that proceeds from C back to B (90 miles).

Our naive queue-based algorithm would end up selecting the second option, even though it’s far
less efficient, because it requires fewer total hops/segments to reach the endpoint. This is
suboptimal.

There are various ways to make your algorithm find a better/faster path, for instance using the
A* algorithm. Or, you could do something really simple… For example, imagine that your
algorithm is currently searching for a route and is at geo-coordinate X. Further, let’s assume that
X is connected to three outgoing segments (X,Y), (X,Z), and (X,Q), and that locations Y, Z and
Q have not yet been visited.

Rather than just enqueuing Y, Z and Q into our queue in some arbitrary order, we could rank-
order those three coordinates by their distance to our ultimate destination, and then insert each
item into our queue in order of its increasing distance from the destination attraction. So if
location Z is .1 miles away from our destination, location Y is 2.5 miles, and location Q is .6
miles, we might enqueue location Z first, Q second and Y third. This “heuristic” will increase
(though not guarantee) the likelihood that we’ll find the shortest path first. Use your creativity to
improve upon the basic queue-based navigation algorithm, or look up A* - it’s actually pretty
simple to implement and will give an optimal result.

 30

Requirements and Other Thoughts

Make sure to read this entire section before beginning your project!

1. In Visual C++, make sure to change your project from UNICODE to Multi Byte Character
set, by going to Project / Properties / Configuration Properties / General / Character Set

2. The entire project can be completed in under 500 lines of C++ code beyond what we've
already written for you, so if your program is getting much larger than this, talk to a TA –
you’re probably doing something wrong.

3. Before you write a line of code for a class, think through what data structures and
algorithms you’ll need to solve the problem. How will you use these data structures?
Plan before you program!

4. Don’t make your program overly complex – use the simplest data structures possible
that meet the requirements.

5. You must not modify any of the code in the files we provide you that you will not turn in;
since you're not turning them in, we will not see those changes. We will incorporate the
required files that you turn in into a project with special test versions of the other files.

6. Your Impl classes (e.g., AttractionMapperImpl, NavigatorImpl) must never directly use
your other Impl classes. They MUST use our provided wrapper classes instead:

INCORRECT:
 class NavigatorImpl
 {
 …
 AttractionMapperImpl m_attractionMapper; // BAD!
 …
 };

CORRECT:
 class NavigatorImpl
 {
 …
 AttractionMapper m_attractionMapper; // GOOD!
 …
 };

7. Make sure to implement and test each class independently of the others that depend on
it. Once you get the simplest class coded, get it to compile and test it with a number of
different unit tests. Only once you have your first class working should you advance to
the next class.

8. You may use only those STL containers (e.g., vector, list) that are not forbidden by this
spec. Use the MyMap class if you need a map, for example; do not use the STL map or
unordered_map class.

 31

9. Let Whatever represent MapLoader, AttractionMapper, SegmentMapper, and Navigator.
Subject to the constraints we imposed (e.g., no changes to the public interface of the
Whatever class, no mention of WhateverImpl in any file other than Whatever.cpp, no use
of certain STL containers in your implementation), you're otherwise pretty much free to
do whatever you want in Whatever.cpp as long as it's related to the support of only the
Whatever implementation; for example, you may add members (even public ones) to the
WhateverImpl class (but not the Whatever class, of course) and you may add non-
member support functions (e.g., a custom comparison function for sort()).

If you don’t think you’ll be able to finish this project, then take some shortcuts. For example, if
you can't get your MyMap class working, use the substitute MyMap class we provide so that you
can proceed with implementing other classes, and go back to fixing your MyMap class later.

You can still get a good amount of partial credit if you implement most of the project. Why?
Because if you fail to complete a class (e.g., SegmentMapperImpl), we will provide a correct
version of that class and test it with the rest of your program (by changing our SegmentMapper
class to use our version of the class instead of your version). If you implemented the rest of the
program properly, it should work perfectly with our version of the SegmentMapperImpl class and
we can give you credit for those parts of the project you completed (This is why we’re using Impl
classes and non-Impl classes).

But whatever you do, make sure that ALL CODE THAT YOU TURN IN BUILDS without errors
under both g32 and either Visual Studio or clang++!

What to Turn In
You must turn in six to eight files. These six are required:

MyMap.h Contains your BST map class template implementation
MapLoader.cpp Contains your map loader implementation
AttractionMapper.cpp Contains your attraction mapper implementation
SegmentMapper.cpp Contains your segment mapper implementation
Navigator.cpp Contains your navigation system implementation
report.doc, report.docx, or report.txt Contains your report

These two are optional:

support.h You may define support constants/classes/functions in these support files
support.cpp and use them in your other source files

Use support.h and support.cpp if there are constants, class declarations, functions, and the like
that you want to use in more than one of the other files. (If you wanted to use something in only

 32

one file, then just put it in that file.) Use support.cpp only if you declare things in support.h that
you want to implement in support.cpp.

You are to define your class declarations and all member function implementations directly
within the specified .h and .cpp files. You may add any #includes or constants you like to these
files. You may also add support functions for these classes if you like (e.g., operator<). Make
sure to properly comment your code.

You must submit a brief (You're welcome!) report that presents the big-O for the average case
of the following methods. Be sure to make clear the meaning of the variables in your big-O
expressions, e.g., "If the MapLoader holds N geo-coordinates, and each geo-coordinate is
associated with S geo-segments on average, then getSegments() is O(S2 log N)."

● MyMap: associate() and find()
● AttractionMapper: init(), getGeoCoord()
● SegmentMapper: init(), getSegments()
● Navigator: navigate()

Grading

● 90% of your grade will be assigned based on the correctness of your solution
● 5% of your grade will be based on your report
● 5% of your grade will be based on the optimality of your returned routes

Optimality Grading (5%)
Your route-finding algorithm does not need to find an optimal solution to get most of the credit
for Project 4; it need only return a valid solution. That said, 5% of the points for Project 4 will be
awarded based on the optimality of the paths your algorithm finds.

Given a test case, you will get 1 point for your route for that test case if it is a valid route that is
within 10% of our optimal least-total-distance solution for that test case.

We will then total up the number of points you received, divide it by the total number of test
cases, and multiply this by 5% to compute your optimality grade (out of a total of 5%).

So if your algorithm were to return an almost-optimal solution (within 10% of our solution) in 35
of our 50 test cases, then you’d get a 70% optimality rating (35/50), and we’d give you 70%*5%
points for optimality, or 3.5% out of the possible 5% of your grade for optimality.

Good luck!

